Marktzinsmethode
Bewertungsprobleme durch mehrperiodige Finanzierungsalternativen
Die Diskontierung von Cash Flows in der Standardberechnung eines Kapitalwerts unterstellt, dass die zur Finanzierung und Bewertung herangezogenen Finanzalternativen aus einperiodigen Geschäften bestehen, die auch jede Periode in der relevanten Höhe variiert werden können. Diese Annahme ist aus mehreren Gründen problematisch:
- Betriebe finanzieren sich im Regelfall nicht (nur) durch einperiodige, sondern durch mehrperiodige Kredite. Umgekehrt stehen für Anleger nicht nur einperiodige, sondern längerfristige Anlagealternativen zur Verfügung.
- Die Konditionen einperiodiger oder generell kurzfristiger Kredite unterscheiden sich im Allgemeinen deutlich von längerfristigen Laufzeiten. So wird es als „normale“ Zinsstruktur bezeichnet, wenn festverzinsliche Wertpapiere mit kurzer (Rest-)Laufzeit eine niedrigere Verzinsung aufweisen als solche mit langer (Rest-)Laufzeit.
- Einperiodige Geschäfte können für das laufende Jahr abgeschlossen werden. Ihre Verfügbarkeit und Konditionen in späteren Jahren können nur prognostiziert werden.
Aus diesen Gründen ist eine Projektbewertung von Interesse, die ein Projekt an denjenigen, ein- oder mehrperiodigen Alternativen misst, die zum Entscheidungszeitpunkt über das Projekt zur Verfügung stehen. Ein solches Konzept ist von Schierenbeck und Rolfes unter dem Namen Marktzinsmethode ursprünglich für den Bankbereich entwickelt worden, um den Strukturbeitrag zu bestimmen. Dieser ergibt sich aus der Fristentransformation der Finanzinstitute, die vorwiegend kurzfristige, niedrig verzinsliche Einlagen entgegennehmen und längerfristige, höher verzinsliche Kredite gewähren. Er ist vom Konditionenbeitrag zu unterscheiden, der sich aus den unterschiedlichen Soll- und Habenzinsen für Geschäfte gleicher Laufzeit ergibt.
Idee der Marktzinsmethode
Idee der Marktzinsmethode ist es, ein Investitionsprojekt mit einem Finanzprojekt gleicher Laufzeit und Zahlungsstruktur über die Laufzeit zu vergleichen. Da es nur ausnahmsweise ein genau passendes Vergleichsprojekt gibt, wird es aus den am Kapitalmarkt verfügbaren Finanzprojekten erzeugt. Gesucht ist also eine Kombination von Finanzprojekten, die über die Projektlaufzeit genau die gleichen Zahlungsüberschüsse erzeugt wie das zu bewertende Investitionsprojekt. Lediglich im Entscheidungszeitpunkt 0 verbleibt ein Saldo, der mit der Anfangsinvestition des Projekts verglichen werden kann. Voraussetzung für die Reproduzierbarkeit der Zahlungsüberschüsse ist die Vollständigkeit des Kapitalmarkts: Jedes Projektjahr muss durch die Zahlungen mindestens eines Finanzprojekts angesteuert werden können. Falls mehrere Finanzprojekte sich auf ein Jahr beziehen, ist das günstigste festzulegen.
Die Grundform der Marktzinsmethode unterstellt sogenannte Standardfinanzgeschäfte in normierter Höhe für jede Laufzeit: Sie bestehen aus einer Auszahlung von 1 in Jahr 0, einer festen jährlichen Zinszahlung und der Rückzahlung zum Ende der Laufzeit.
Die folgende Tabelle zeigt ein Beispiel für Standardfinanzgeschäfte bis zu drei Jahren Laufzeit:
Standardfinanzanlagen der Laufzeit | |||
Zinssatz | 4 % | 5 % | 8 % |
0 | -1,00 | -1,00 | -1,00 |
1 | 1,04 | 0,05 | 0,08 |
2 | 1,05 | 0,08 | |
3 | 1,08 |
Mit solchen Standardfinanzgeschäften lassen sich die Zahlungsüberschüsse eines Projekts in allen Jahren seiner Laufzeit offensichtlich rekonstruieren. Allerdings verursachen die Finanzgeschäfte ihrerseits wieder Zinswirkungen, die ebenfalls auszugleichen sind.
Wegen der Struktur der Ausgleichsprojekte empfiehlt sich eine retrograde Vorgehensweise, nach der sukzessive die Überschüsse des letzten Laufzeitjahrs, dann des vorletzten Laufzeitsjahres usw. ausgeglichen werden, bis schließlich nur noch der Saldo im Entscheidungszeitpunkt verbleibt.
Ein Rechenbeispiel zur Marktzinsmethode
Die folgende Rechentabelle verdeutlicht das Prinzip für ein Projekt mit einer Anfangsinvestition von 320.000 € und jährlichen Rückzahlungen von 130.000 € in den Jahren 1 bis 3:
Investitions- projekt |
Ausgleichsgeschäfte der Laufzeit | Saldo | |||
3 Jahre | 2 Jahre | 1 Jahr | |||
Zinssatz | 8 % | 5 % | 4 % | ||
0 | -320.000 | 120.370 | 114.638 | 110.229 | 25.238 |
1 | 130.000 | -9.630 | -5.732 | -114.638 | 0 |
2 | 130.000 | -9.630 | -120.370 | 0 | |
3 | 130.000 | -130.000 | 0 |
Mit dem Einnahmenüberschuss von 130.000 € in Jahr 3 können Zins und Tilgung für einen dreijährigen achtprozentigen Kredit mit einem Kreditbetrag von 130.000/1,08 = 120.370 € bedient werden. Aus diesem Kredit ergibt sich eine Zinsverpflichtung von 120.370 · 8 % in den Jahren 1 und 2. Vom Einnahmenüberschuss des Jahres 2 verbleibt nach dieser Zinszahlung noch 120.370 €. Damit kann ein zweijähriger fünfprozentiger Kredit bedient werden, der über 120.370/1,05 = 114.638 € abgeschlossen wird. Er führt in Jahr 1 zu einer Zinszahlung von 5.732 €, so dass vom Einnahmenüberschuss noch 114.638 € verbleiben. Sie werden für Zins und Tilgung eins einjährigen vierprozentigen Kredits in Höhe von 114.638/1,04 = 110.229 € verplant.
Mit einem einjährigen Kredit über 110.229 €, einem zweijährigen Kredit über 114.638 € und einem dreijährigen Kredit über 120.370 € ergeben sich Einzahlungen in Jahr 0 in Höhe von 345.238 €. Nach Abzug der Anfangsinvestition von 320.000 € verbleiben 25.238 €. Dies ist der Kapitalwert des Projekts nach der Marktzinsmethode: der bei Projektdurchführung zusätzlich entnehmbare Betrag (im Vergleich zur Projektunterlassung).
Verallgemeinerung der Vorgehensweise der Marktzinsmethode
___
siehe auch:
Troßmann, Ernst: Investition. Stuttgart 1998, Kapitel 4.3
Schierenbeck, Henner: Das Meß- und Steuerungskonzept der Marktzinsmethode. In: Zeitschrift für Betriebswirtschaft (64) 1994, S. 1417-1452.
Rolfes, Bernd: Marktzinsorientierte Investitionsrechnung. In: Zeitschrift für Betriebswirtschaft (63) 1993, S. 691-712.